1.
Hannun YA, Obeid LM. The ceramide-centric universe of lipidmediated cell regulation: Stress encounters of the lipid kind.
J Biol Chem. 2002;277:25847-50.
Hannun YA, Obeid LM.. The ceramide-centric universe of lipidmediated cell regulation: Stress encounters of the lipid kind.
J Biol Chem. 2002;277:25847-50. PMID:
10.1074/jbc.r200008200. PMID:
12011103.
2.
Coant N, Sakamoto W, Mao C, Hannun YA. Ceramidases, roles in sphingolipid metabolism and in health and disease.
Adv Biol Regul. 2017;63:122-31.
Coant N, Sakamoto W, Mao C, Hannun YA.. Ceramidases, roles in sphingolipid metabolism and in health and disease.
Adv Biol Regul. 2017;63:122-31. PMID:
10.1016/j.jbior.2016.10.002. PMID:
27771292.
3.
Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis.
Oncogene. 2003;22:5897-906.
Kolesnick R, Fuks Z.. Radiation and ceramide-induced apoptosis.
Oncogene. 2003;22:5897-906. PMID:
10.1038/sj.onc.1206702. PMID:
12947396.
4.
Oh HL, Seok JY, Kwon CH, Kang SK, Kim YK. Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain.
Neurotoxicology. 2006;27:31-8.
Oh HL, Seok JY, Kwon CH, Kang SK, Kim YK.. Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain.
Neurotoxicology. 2006;27:31-8. PMID:
10.1016/j.neuro.2005.05.008. PMID:
16143399.
5.
MacRae VE, Burdon T, Ahmed SF, Farquharson C. Ceramide inhibition of chondrocyte proliferation and bone growth is IGF-I independent.
J Endocrinol. 2006;191:369-77.
MacRae VE, Burdon T, Ahmed SF, Farquharson C.. Ceramide inhibition of chondrocyte proliferation and bone growth is IGF-I independent.
J Endocrinol. 2006;191:369-77. PMID:
10.1677/joe.1.06958. PMID:
17088406.
6.
Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis.
Nature. 1996;380:75-9.
Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN.. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis.
Nature. 1996;380:75-9. PMID:
10.1038/380075a0. PMID:
8598911.
7.
Schubert KM, Scheid MP, Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473.
J Biol Chem. 2000;275:13330-5.
Schubert KM, Scheid MP, Duronio V.. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473.
J Biol Chem. 2000;275:13330-5. PMID:
10.1074/jbc.275.18.13330. PMID:
10788440.
8.
Straczkowski M, Kowalska I. The role of skeletal muscle sphingolipids in the development of insulin resistance.
Rev Diabet Stud. 2008;5:13-24.
Straczkowski M, Kowalska I.. The role of skeletal muscle sphingolipids in the development of insulin resistance.
Rev Diabet Stud. 2008;5:13-24. PMID:
10.1900/rds.2008.5.13. PMID:
18548166.
9.
Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids.
Nat Rev Mol Cell Biol. 2008; 9:139-50.
Hannun YA, Obeid LM.. Principles of bioactive lipid signalling: lessons from sphingolipids.
Nat Rev Mol Cell Biol. 2008; 9:139-50. PMID:
10.1038/nrm2329. PMID:
18216770.
10.
Castro BM, Prieto M, Silva LC. Ceramide: A simple sphingolipid with unique biophysical properties.
Prog Lipid Res. 2014;54:53-67.
Castro BM, Prieto M, Silva LC.. Ceramide: A simple sphingolipid with unique biophysical properties.
Prog Lipid Res. 2014;54:53-67. PMID:
10.1016/j.plipres.2014.01.004. PMID:
24513486.
11.
Colombini M. Ceramide channels and their role in mitochondria-mediated apoptosis.
Biochim Biophys Acta. 2010;1797:1239-44.
Colombini M.. Ceramide channels and their role in mitochondria-mediated apoptosis.
Biochim Biophys Acta. 2010;1797:1239-44. PMID:
10.1016/j.bbabio.2010.01.021. PMID:
20100454.
12.
Spiegel S, Merrill AH Jr. Sphingolipid metabolism and cell growth regulation.
FASEB J. 1996;10:1388-97.
Spiegel S, Merrill AH Jr.. Sphingolipid metabolism and cell growth regulation.
FASEB J. 1996;10:1388-97. PMID:
10.1096/fasebj.10.12.8903509. PMID:
8903509.
13.
Law BA, Liao X, Moore KS, Southard A, Roddy P, Ji R, Szulc Z, Bielawska A, Schulze PC, Cowart LA. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes.
FASEB J. 2018;32:1403-16.
Law BA, Liao X, Moore KS, Southard A, Roddy P, Ji R, Szulc Z, Bielawska A, Schulze PC, Cowart LA.. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes.
FASEB J. 2018;32:1403-16. PMID:
10.1096/fj.201700300r. PMID:
29127192.
14.
Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, Tuinei J, Homma S, Jiang XC, Abel ED, Goldberg IJ. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy.
J Lipid Res. 2008;49:2101-12.
Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, Tuinei J, Homma S, Jiang XC, Abel ED, Goldberg IJ.. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy.
J Lipid Res. 2008;49:2101-12. PMID:
10.1194/jlr.m800147-jlr200. PMID:
18515784.
15.
Russ DW, Wills AM, Boyd IM, Krause J. Weakness, SR function and stress in gastrocnemius muscles of aged male rats.
Exp Gerontol. 2014;50:40-4.
Russ DW, Wills AM, Boyd IM, Krause J.. Weakness, SR function and stress in gastrocnemius muscles of aged male rats.
Exp Gerontol. 2014;50:40-4. PMID:
10.1016/j.exger.2013.11.018. PMID:
24316040.
16.
Błachnio-Zabielska A, Zabielski P, Baranowski M, Gorski J. Aerobic training in rats increases skeletal muscle sphingomyelinase and serine palmitoyltransferase activity, while decreasing ceramidase activity.
Lipids. 2011;46:229-38.
Błachnio-Zabielska A, Zabielski P, Baranowski M, Gorski J.. Aerobic training in rats increases skeletal muscle sphingomyelinase and serine palmitoyltransferase activity, while decreasing ceramidase activity.
Lipids. 2011;46:229-38. PMID:
10.1007/s11745-010-3515-z. PMID:
21181285.
17.
Chen TC, Chen HL, Pearce AJ, Nosaka K. Attenuation of eccentric exercise-induced muscle damage by preconditioning exercises.
Med Sci Sports Exerc. 2012;44:2090-8.
Chen TC, Chen HL, Pearce AJ, Nosaka K.. Attenuation of eccentric exercise-induced muscle damage by preconditioning exercises.
Med Sci Sports Exerc. 2012;44:2090-8. PMID:
10.1249/mss.0b013e31825f69f3. PMID:
22688830.
18.
Newham DJ, McPhail G, Mills KR, Edwards RH. Ultrastructural changes after concentric and eccentric contractions of human muscle.
J Neurol Sci. 1983;61:109-22.
Newham DJ, McPhail G, Mills KR, Edwards RH.. Ultrastructural changes after concentric and eccentric contractions of human muscle.
J Neurol Sci. 1983;61:109-22. PMID:
10.1016/0022-510x(83)90058-8. PMID:
6631446.
19.
Byrne C, Eston R, Edwards RH. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage.
Scand J Med Sci Sports. 2001;11:134-40.
Byrne C, Eston R, Edwards RH.. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage.
Scand J Med Sci Sports. 2001;11:134-40. PMID:
10.1046/j.1524-4725.2001.110302.x. PMID:
11374426.
20.
Clarkson PM, Sayers SP. Etiology of exercise-induced muscle damage.
Can J Appl Physiol. 1999;24:234-48.
Clarkson PM, Sayers SP.. Etiology of exercise-induced muscle damage.
Can J Appl Physiol. 1999;24:234-48. PMID:
10.1139/h99-020. PMID:
10364418.
21.
Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage.
Sports Med. 2008;38:483-503.
Howatson G, van Someren KA.. The prevention and treatment of exercise-induced muscle damage.
Sports Med. 2008;38:483-503. PMID:
10.2165/00007256-200838060-00004. PMID:
18489195.
22.
Peake JM, Suzuki K, Wilson G, Hordern M, Nosaka K, Mackinnon L, Coombes JS. Exercise-induced muscle damage, plasma cytokines, and markers of neutrophil activation.
Med Sci Sports Exerc. 2005;37:737-45.
Peake JM, Suzuki K, Wilson G, Hordern M, Nosaka K, Mackinnon L, Coombes JS.. Exercise-induced muscle damage, plasma cytokines, and markers of neutrophil activation.
Med Sci Sports Exerc. 2005;37:737-45. PMID:
10.1249/01.mss.0000161804.05399.3b. PMID:
15870626.
23.
Hyldahl RD, Hubal MJ. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.
Muscle Nerve. 2014;49:155-70.
Hyldahl RD, Hubal MJ.. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.
Muscle Nerve. 2014;49:155-70. PMID:
10.1002/mus.24077. PMID:
24030935.
24.
Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, Toyokuni S, Oka S, Yasuhara M, Yoshikawa T. Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice.
Antioxid Redox Signal. 2003;5:139-44.
Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, Toyokuni S, Oka S, Yasuhara M, Yoshikawa T.. Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice.
Antioxid Redox Signal. 2003;5:139-44. PMID:
10.1089/152308603321223630. PMID:
12626126.
25.
Yi ES, Oh S, Lee JK, Leem YH. Chronic stress-induced dendritic reorganization and abundance of synaptosomal PKA-dependent CP-AMPA receptor in the basolateral amygdala in a mouse model of depression.
Biochem Biophys Res Commun. 2017;486:671-8.
Yi ES, Oh S, Lee JK, Leem YH.. Chronic stress-induced dendritic reorganization and abundance of synaptosomal PKA-dependent CP-AMPA receptor in the basolateral amygdala in a mouse model of depression.
Biochem Biophys Res Commun. 2017;486:671-8. PMID:
10.1016/j.bbrc.2017.03.093. PMID:
28336441.
26.
Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise.
J Appl Physiol (1985). 2017;122:559-70.
Peake JM, Neubauer O, Della Gatta PA, Nosaka K.. Muscle damage and inflammation during recovery from exercise.
J Appl Physiol (1985). 2017;122:559-70. PMID:
10.1152/japplphysiol.00971.2016. PMID:
28035017.
27.
Douglas J, Pearson S, Ross A, McGuigan M. Eccentric exercise: Physiological characteristics and acute responses.
Sports Med. 2017;47:663-75.
Douglas J, Pearson S, Ross A, McGuigan M.. Eccentric exercise: Physiological characteristics and acute responses.
Sports Med. 2017;47:663-75. PMID:
10.1007/s40279-016-0624-8. PMID:
27638040.
28.
Hyldahl RD, Hubal MJ. Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise.
Muscle Nerve. 2014;49:155-70.
Hyldahl RD, Hubal MJ.. Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise.
Muscle Nerve. 2014;49:155-70. PMID:
10.1002/mus.24077. PMID:
24030935.
29.
Butterfield TA, Best TM, Merrick MA. The dual roles of neutrophils and macrophages in inflammation: A critical balance between tissue damage and repair. J Athl Train. 2006;41:457-65.
Butterfield TA, Best TM, Merrick MA.. The dual roles of neutrophils and macrophages in inflammation: A critical balance between tissue damage and repair.
J Athl Train. 2006;41:457-65. PMID:
17273473.
30.
Nguyen HX, Tidball JG. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro.
J Physiol. 2003;547:125-32.
Nguyen HX, Tidball JG.. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro.
J Physiol. 2003;547:125-32. PMID:
10.1111/j..2002.00125.x. PMID:
12562965.
31.
Owens DJ, Twist C, Cobley JN, Howatson G, Close GL. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions?
Eur J Sport Sci. 2019;19:71-85.
Owens DJ, Twist C, Cobley JN, Howatson G, Close GL.. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions?
Eur J Sport Sci. 2019;19:71-85. PMID:
10.1080/17461391.2018.1505957. PMID:
30110239.
32.
Armstrong RB, Ocilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle.
J Appl Physiol Respir Environ Exerc Physiol. 1983;54:80-93.
Armstrong RB, Ocilvie RW, Schwane JA.. Eccentric exercise-induced injury to rat skeletal muscle.
J Appl Physiol Respir Environ Exerc Physiol. 1983;54:80-93. PMID:
10.1152/jappl.1983.54.1.80. PMID:
6826426.
33.
Chazaud B. Inflammation during skeletal muscle regeneration and tissue remodeling: Application to exercise-induced muscle damage management.
Immunol Cell Biol. 2016; 94:140-5.
Chazaud B.. Inflammation during skeletal muscle regeneration and tissue remodeling: Application to exercise-induced muscle damage management.
Immunol Cell Biol. 2016; 94:140-5. PMID:
10.1038/icb.2015.97. PMID:
26526620.
34.
Sousa M, Teixeira VH, Soares J. Dietary strategies to recover from exercise-induced muscle damage.
Int J Food Sci Nutr. 2014;65:151-63.
Sousa M, Teixeira VH, Soares J.. Dietary strategies to recover from exercise-induced muscle damage.
Int J Food Sci Nutr. 2014;65:151-63. PMID:
10.3109/09637486.2013.849662. PMID:
24180469.
35.
Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage.
Sports Med. 2008;38:483-503.
Howatson G, van Someren KA.. The prevention and treatment of exercise-induced muscle damage.
Sports Med. 2008;38:483-503. PMID:
10.2165/00007256-200838060-00004. PMID:
18489195.
36.
Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis.
Front Physiol. 2018;9:403.
Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B.. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis.
Front Physiol. 2018;9:403PMID:
10.3389/fphys.2018.00403. PMID:
29755363.
37.
Merrill AH Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway.
J Biol Chem. 2002;277:25843-6.
Merrill AH Jr.. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway.
J Biol Chem. 2002;277:25843-6. PMID:
10.1074/jbc.r200009200. PMID:
12011104.
38.
Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: From synthesis to breakdown.
Adv Exp Med Biol. 2010;688:1-23.
Gault CR, Obeid LM, Hannun YA.. An overview of sphingolipid metabolism: From synthesis to breakdown.
Adv Exp Med Biol. 2010;688:1-23. PMID:
20919643.
39.
Kumagai T, Ishino T, Nakagawa Y. Acidic sphingomyelinase induced by electrophiles promotes proinflammatory cytokine production in human bladder carcinoma ECV-304 cells.
Arch Biochem Biophys. 2012;519:8-16.
Kumagai T, Ishino T, Nakagawa Y.. Acidic sphingomyelinase induced by electrophiles promotes proinflammatory cytokine production in human bladder carcinoma ECV-304 cells.
Arch Biochem Biophys. 2012;519:8-16. PMID:
10.1016/j.abb.2011.12.015. PMID:
22226857.
40.
Santana P, Peña LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis.
Cell. 1996;86:189-99.
Santana P, Peña LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R.. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis.
Cell. 1996;86:189-99. PMID:
10.1016/s0092-8674(00)80091-4. PMID:
8706124.
41.
García-Ruiz C, Colell A, Marí M, Morales A, Calvo M, Enrich C, Fernández-Checa JC. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice.
J Clin Invest. 2003;111:197-208.
García-Ruiz C, Colell A, Marí M, Morales A, Calvo M, Enrich C, Fernández-Checa JC.. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice.
J Clin Invest. 2003;111:197-208. PMID:
12531875.
42.
Biswas R, Trout KL, Jessop F, Harkema JR, Holian A. Imipramine blocks acute silicosis in a mouse model.
Part Fibre Toxicol. 2017;14:36.
Biswas R, Trout KL, Jessop F, Harkema JR, Holian A.. Imipramine blocks acute silicosis in a mouse model.
Part Fibre Toxicol. 2017;14:36PMID:
10.1186/s12989-017-0217-1. PMID:
28893276.
43.
Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E, Lu S, Jiang XC. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice.
J Biol Chem. 2005;280:10284-9.
Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E, Lu S, Jiang XC.. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice.
J Biol Chem. 2005;280:10284-9. PMID:
10.1074/jbc.m412348200. PMID:
15590644.