1. Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B. Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up regulated in aged rat tibialis anterior muscle. Mechanism of Ageing and Development 2006;127:794-801.
2. Maki T, Yamamoto D, Nakanishi S, Iida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutrition Research 2012;32:676-683. PMID:
23084640.
3. Attaix D, Mosoni L, Dardevet D, Combaret L, Mirand PP, Grizard J. Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. The International Journal of Biochemistry & Cell Biology 2005;37:1962-1973. PMID:
15905114.
4. Herningtyas EH, Okimura Y, Handayaningsih AE, Yamamoto D, Maki T, Iida K, Takahashi Y, Kaji H, Chihara K. Branched-chain amino acids and arginine suppress MaFbx/atrogin-1 mRNA expression via mTOR pathway in C2C12 cell line. Biochemistry et Biophysian Acta 2008;1780:1115-1120.
5. Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol 2002;92:1367-1377. PMID:
11895999.
6. Thomason DB, Booth FW. Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol 1990;68:1-12. PMID:
2179205.
7. Servais S, Letexier D, Favier R, Duchamp C, Desplanches D. Prevention of unloading-induced atrophy by vitamin E supplementation: Links between oxidative stress and soleus muscle proteolysis? Free Radical Biology & Medicine 2007;42:627-635. PMID:
17291986.
9. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. American Journal of Physiology 2004;284:C834-C843. PMID:
15355854.
10. Jagoe RT, Goldberg AL. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 2001;4:183-190. PMID:
11517350.
11. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB 2004;18:39-51.
12. Price SR. Increased transcription of ubiquitin-proteasome system components: molecular responses associated with muscle atrophy. IJBCB 2003;35:617-628.
13. Glickman MH, Ciechanover A. The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction. Physiol rev 2001;82:373-428. PMID:
11917093.
14. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlen R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology 2001;3:1014-1019. PMID:
11715023.
15. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ. The E3 ligases MuRF1 Degrades Myosin Heavy Chain Protein in Dexamethasone-Treated Skeletal Muscle. Cell metabolism 2007;6:376-385. PMID:
17983583.
17. Gomes MD, Lecker SH, Jagoe RT, Goldberg AL. Atrigin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proceedings of the National Academic Sciences 2001;98:1440-1445.
18. Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ. Insulin-like growth factor-1(IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/akt/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway. The Journal of Biological Chemistry 2005;280:2737-2744. PMID:
15550386.
19. Oishi Y, Ogata T, Yamamoto K, Terada M, Ohira T, Ohira Y, Taniguchi K, Roy R. Cellular adaptation in soleus muscle during recovery after hindlimb unloading. Acta Pshysiol 2008;192:381-395.
20. Tesseraud S, Métayar-Coustard S, Boussaid S, Crochet S, Audouin E, Derouet M, Seiliez I. Insulin and amino acid availability regulate atrogin-1 in avian QT6 cell. Biochemical and Biophysical Research Communications 2007;357:181-186. PMID:
17418104.
21. Suryawan A, Jeyapalan AS, Orellana RA, Wilson FA, Nguyen HV, Davis TA. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. American Journal of Physiology-Endocrinology And Metabolism 2008;295:E868-E875. PMID:
18682538.
22. Sandri M, Sandri C, Gilbert E, Picard A, Walsh K, Schiaffino S, Lecker S, Goldberg A. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004;117:399-412. PMID:
15109499.
23. Criswell DS, Booth FW, DeMayo F, Schwartz RJ, Gordon SE, Fiorotto ML. Overexpression of IGF-1 in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy. Am J Physiol Endocrinol Metab 1998;275:E373-E379.
24. Desplanches D, Mayet MH, Sempore B, Flandrois R. Structural and functional responses to prolonged hindlimb suspension in rat muscle. J Appl Physiol 1987;63:558-563. PMID:
3654414.
25. Fitts RH, Riley DA, Widrick JJ. Physiology of a micro-gravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 2000;89:823-839. PMID:
10926670.
26. Hurst JE, Fitts RH. Hindlimb unloading-induced muscle atrophy and loss of function: protective effect of isometric exercise. J Appl Physiol 2003;95:1405-1417. PMID:
12819219.
27. Yamamoto D, Maki T, Herningtyas EH, Ikeshita N, Shibahara H, Sugiyama Y, Nakanishi S, Lida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y. Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle & Nerve 2010;41:819-827. PMID:
20169591.
28. Lynch CJ. Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr 2001;131:861S-865S. PMID:
11238775.
29. Ribeiro CB, Christofoletti DC, Pezolato VA, Durigan Rita de CM, Prestes J, Tibana RA, Pereira ECL, de Sousa Neto IV, Durigan JLQ, da Silva CA. Leucine minimizes denervation-induced skeletal muscle atrophy of rats through akt/mtor signaling pathways. Frontiers in physiology 2015;6.
31. Busquetes S, Alvarez B, Liovera M, Agell N, Lopez-Soriano FJ, Argiles JM. Branched-chain amino acids inhibit proteolysis in rat skeletal muscle; mechanisms involved. J Cell Physiol 2000;184:380-384. PMID:
10911370.
32. Hamel FG, Upward JL, Siford GL, Duckworth WC. Inhibition of proteasome activity by selected amino acids. Metabolism 2003;52:810-814. PMID:
12870152.
33. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18:1926-1945. PMID:
15314020.
34. Nakashima K, Ishida A, Yamazaki M, Abe H. Leucine suppress myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles. Biochem Biophys Res Commun 2005;336:660-666. PMID:
16153608.
36. Yoshizawa F. Regulation of protein synthesis by branched-chain amino acids in vivo. Biochem Biophys Res Commun 2004;313:417-422. PMID:
14684178.
37. Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathsway: insights from genetic models. Skeletal muscle 2011;1:4PMID:
21798082.
38. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Disease Models & Mechanisms 2013;6:25-39. PMID:
23268536.
39. Louard RJ, Barrett EJ, Gelfand RA. Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. Clin Sci 1990;79:457-466. PMID:
2174312.
40. Louard RJ, Barrett EJ, Gelfand RA. Overnight branched-chain amino acid infusion causes sustained suppression of muscle proteolysis. Metabilism 1995;44:424-429.