1.
Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJF. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise.
Am J Physiol - Endocrinol Metab. 2000;278:E316-29.
. PMID:
10.1152/ajpendo.2000.278.2.E316.
2.
Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise.
Clin Sci. 1981;61:331-8.
. PMID:
10.1042/cs0610331.
3.
Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis.
Am J Physiol Regul Integr Comp Physiol. 2004;287:R502-16.
. PMID:
10.1152/ajpregu.00114.2004.
5.
Stevenson RW, Mitchell DR, Hendrick GK, Rainey R, Cherrington AD, Frizzell RT. Lactate as substrate for glycogen resynthesis after exercise.
J Appl Physiol. 1987;62:2237-40.
. PMID:
10.1152/jappl.1987.62.6.2237.
6.
Brooks GA. The Science and Translation of Lactate Shuttle Theory.
Cell Metab. 2018;27:757-85.
. PMID:
10.1016/j.cmet.2018.03.008.
8.
Cerda-Kohler H, Henríquez-Olguín C, Casas M, Jensen TE, Llanos P, Jaimovich E. Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse.
Physiol Rep. 2018;6:1-9.
. PMID:
10.14814/phy2.13800.
9.
Kitaoka Y, Takeda K, Tamura Y, Hatta H. Lactate administration increases mRNA expression of PGC-1α and UCP3 in mouse skeletal muscle.
NRC Research Press. 2016;41:695-8.
. PMID:
10.1139/apnm-2016-0016.
10.
Hashimoto T, Yokokawa T, Narusawa R, Okada Y, Kawaguchi R, Higashida K. A lactate-based compound containing caffeine in addition to voluntary running exercise decreases subcutaneous fat mass and improves glucose metabolism in obese rats.
J Funct Foods. 2019;56:84-91.
. PMID:
10.1016/j.jff.2019.03.007.
11.
Kim J, Hwang H, Park J, Yun HY, Suh H, Lim K. Silk peptide treatment can improve the exercise performance of mice.
J Int Soc Sports Nutr. 2014;11:35.
. PMID:
10.1186/1550-2783-11-35.
12.
Spriet LL, Heigenhauser GJF. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise.
Exerc Sport Sci Rev. 2002;30:91-5.
. PMID:
10.1097/00003677-200204000-00009.
13.
Glatz JFC, Luiken JJFP, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease.
Physiol Rev. 2010;90:367-417.
. PMID:
10.1152/physrev.00003.2009.
14.
Klip A. The many ways to regulate glucose transporter 4.
Appl Physiol Nutr Metab. 2009;34:481-7.
. PMID:
10.1139/H09-047.
15.
Jain SS, Luiken JJFP, Snook LA, Han XX, Holloway GP, Glatz JFC, & Bonen A. Fatty acid transport and transporters in muscle are critically regulated by Akt2.
FEBS Lett. 2015;589:2769-75.
. PMID:
10.1016/j.febslet.2015.08.010.
16.
Leick L, Plomgaard P, Grønløkke L, Al-Abaiji F, Wojtaszewski JFP, Pilegaard H. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery.
Scand J Med Sci Sport. 2010;20:593-9.
. PMID:
10.1111/j.1600-0838.2009.00988.x.
17.
Talanian JL, Holloway GP, Snook LA, Heigenhauser GJF, Bonen A, Spriet LL. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle.
Am J Physiol - Endocrinol Metab. 2010;299:180-8.
. PMID:
10.1152/ajpendo.00073.2010.
18.
Kim J, Park J, Lim K. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity.
J Nutr Sci Vitaminol. 2016;62:141-61.
. PMID:
10.3177/jnsv.62.141.
19.
Kim J, Lim K. Relationship between FAT/CD36 protein in skeletal muscle and whole-body fat oxidation in endurance-trained mice.
J Exerc Nutrition Biochem. 2016; 20:48-52.
. PMID:
10.20463/jenb.2016.0057.
20.
Kim J, Park J, Kim N, Park HY, Lim K. Inhibition of androgen receptor can decrease fat metabolism by decreasing carnitine palmitoyltransferase I levels in skeletal muscles of trained mice.
Nutr Metab. 2019;27:82-91.
. PMID:
10.1186/s12986-019-0406-z.
21.
Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function.
J Biol Chem. 2002;277:30409-12.
. PMID:
10.1074/jbc.R200006200.
22.
Siu PM, Donley DA, Bryner RW, Alway SE. Citrate synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles.
J Appl Physiol. 2003;94:555-60.
. PMID:
10.1152/japplphysiol.00821.2002.
23.
Merritt ME, Harrison C, Sherry AD, Malloy CR, Burgess SC. Flux through hepatic pyruvate carboxylase and phosphoenolpyruvate carboxykinase detected by hyperpolarized 13C magnetic resonance.
Proc Natl Acad Sci U S A. 2011;108:19084-9.
. PMID:
10.1073/pnas.1111247108.
24.
Nuttall FQ, Gilboe DP, Gannon MC, Niewoehner CB, Tan AWH. Regulation of glycogen synthesis in the liver.
Am J Med. 1988;85:77-85.
. PMID:
10.1016/0002-9343(88)90400-7.
25.
von Wilamowitz-Moellendorff A von, Hunter RW, García-Rocha M, Kang L, López-Soldado I, Lantier L, Patel K, Peggie MW, Martínez-Pons C, Voss M, Calbó J, Cohen PTW, Wasserman DH, Guinovart JJ, Sakamoto K. Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis.
Diabetes. 2013;62:4070-82.
. PMID:
10.2337/db13-0880.
26.
Pursell N, Gierut J, Zhou W, Dills M, Diwanji R, Gjorgjieva M, Saxena U, Yang JS, Shah A, Venkat N, Storr R, Kim B, Wang W, Abrams M, Raffin M, Mithieux G, Rajas F, Dudek H, Brown BD, Lai C. Inhibition of Glycogen Synthase II with RNAi Prevents Liver Injury in Mouse Models of Glycogen Storage Diseases.
Mol Ther. 2018;26:1771-82.
. PMID:
10.1016/j.ymthe.2018.04.023.