1.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018;68:394-424.
. PMID:
10.3322/caac.21492.
2.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019.
CA Cancer J Clin. 2019;69:7-34.
. PMID:
10.3322/caac.21551.
3.
Lee KP, Lee K, Park WH, Kim H, Hong H. Piperine inhibits platelet-derived growth factor-BB-induced proliferation and migration in vascular smooth muscle cells.
J Med Food. 2015;18:208-15.
. PMID:
10.1089/jmf.2014.3229.
4.
Dethlefsen C, Hansen LS, Lillelund C, Andersen C, Gehl J, Christensen JF, Pedersen BK, Hojman P. Exercise-induced catecholamines activate the hippo tumor suppressor pathway to reduce risks of breast cancer development.
Cancer Res. 2017;77:4894-04.
. PMID:
10.1158/0008-5472.CAN-16-3125.
5.
Berrueta L, Bergholz J, Munoz D, Muskaj I, Badger GJ, Shukla A, Kim HJ, Zhao JJ, Langevin HM. Stretching reduces tumor growth in a mouse breast cancer model.
Sci Rep. 2018;8:7864.
. PMID:
10.1038/s41598-018-26198-7.
6.
Alizadeh AM, Heydari Z, Rahimi M, Bazgir B, Shirvani H, Alipour S, Heidarian Y, Khalighfard S, Isanejad A. Oxytocin mediates the beneficial effects of the exercise training on breast cancer.
Exp Physiol. 2018;103:222-35.
. PMID:
10.1113/EP086463.
7.
Buss LA, Dachs GU. Voluntary exercise slows breast tumor establishment and reduces tumor hypoxia in ApoE-/-mice.
J Appl Physiol. 2018;124:938-49.
. PMID:
10.1152/japplphysiol.00738.2017.
8.
Glass OK, Bowie M, Fuller J, Darr D, Usary J, Boss K, Choudhury KR, Liu X, Zhang Z, Locasale JW, Williams C, Dewhirst MW, Jones LW, Seewaldt V. Differential response to exercise in claudin-low breast cancer.
Oncotarget. 2017;8:100989-1004.
. PMID:
10.18632/oncotarget.21054.
9.
Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, Palmer G, Jones LW, Dewhirst MW. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise.
J Natl Cancer Inst. 2015;107:djv040.
. PMID:
10.1093/jnci/djv040.
10.
Wennerberg E, Lhuillier C, Rybstein MD, Dannenberg K, Rudqvist NP, Koelwyn GJ, Jones LW, Demaria S. Exercise reduces immune suppression and breast cancer progression in a preclinical model.
Oncotarget. 2020;11:452-61.
. PMID:
10.18632/oncotarget.27464.
11.
Wang B, Xu H, Hu X, Ma W, Zhang J, Li Y, Yu M, Zhang Y, Li X, Ye X. Synergetic inhibition of daidzein and regular exercise on breast cancer in bearing-4T1 mice by regulating NK cells and apoptosis pathway.
Life Sci. 2020;245:117387.
. PMID:
10.1016/j.lfs.2020.117387.
12.
Smeda M, Przyborowski K, Proniewski B, Zakrzewska A, Kaczor D, Stojak M, Buczek E, Nieckarz Z, Zoladz JA, Wietrzyk J, Chlopicki S. Breast cancer pulmonary metastasis is increased in mice undertaking spontaneous physical training in the running wheel; a call for revising beneficial effects of exercise on cancer progression. Am J Cancer Res. 2017;7:1926-36.
.
13.
Goh J, Endicott E, Ladiges WC. Pre-tumor exercise decreases breast cancer in old mice in a distance-dependent manner. Am J Cancer Res. 2014;4:378-84.
.
14.
Lee B, Chung W. Effects of aerobic exercise on cytokine expression in a breast cancer mouse model.
Iran J Public Health. 2020;49:14-20.
. PMID:
10.18502/ijph.v49i1.3046.
15.
Steiner JL, Davis JM, McClellan JL, Enos RT, Murphy EA. Effects of voluntary exercise on tumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer.
Int J Oncol. 2013;42:1466-72.
. PMID:
10.3892/ijo.2013.1827.
16.
Colbert LH, Westerlind KC, Perkins SN, Haines DC, Berrigan D, Donehower LA, Fuchs-Young R, Hursting SD. Exercise effects on tumorigenesis in a p53-deficient mouse model of breast cancer.
Med Sci Sports Exerc. 2009;41:1597-605.
. PMID:
10.1249/MSS.0b013e31819f1f05.
17.
Jones LW, Viglianti BL, Tashjian JA, Kothadia SM, Keir ST, Freedland SJ, Potter MQ, Moon EJ, Schroeder T, Herndon JE 2nd, Dewhirst MW. Effect of aerobic exercise on tumor physiology in an animal model of human breast cancer.
J Appl Physiol. 2010;108:343-8.
. PMID:
10.1152/japplphysiol.00424.2009.
18.
Goh J, Tsai J, Bammler TK, Farin FM, Endicott E, Ladiges WC. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner.
PLoS One. 2013;8:e80123.
. PMID:
10.1371/journal.pone.0080123.
19.
Vulczak A, Souza AO, Ferrari GD, Azzolini AECS, Pereira-da-Silva G, Alberici LC. Moderate exercise modulates tumor metabolism of triple-negative nreast cancer.
Cells. 2020;9:628.
. PMID:
10.3390/cells9030628.
20.
Shalamzari SA, Agha-Alinejad H, Alizadeh S, Shahbazi S, Khatib ZK, Kazemi A, Saei MA, Minayi N. The effect of exercise training on the level of tissue IL-6 and vascular endothelial growth factor in breast cancer bearing mice. Iran J Basic Med Sci. 2014;17:231-58.
.
21.
Hagar A, Wang Z, Koyama S, Serrano JA, Melo L, Vargas S, Carpenter R, Foley J. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors.
BMC Cancer. 2019;19:536.
. PMID:
10.1186/s12885-019-5745-7.
22.
Molanouri Shamsi M, Chekachak S, Soudi S, Quinn LS, Ranjbar K, Chenari J, Yazdi MH, Mahdavi M. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia.
Cytokine. 2017;90:100-8.
. PMID:
10.1016/j.cyto.2016.11.005.
23.
Bianco TM, Abdalla DR, Desidério CS, Thys S, Simoens C, Bogers JP, Murta EFC, Michelin MA. The influence of physical activity in the anti-tumor immune response in experimental breast tumor.
Immunol Lett. 2017;190:148-58.
. PMID:
10.1016/j.imlet.2017.08.007.
24.
Ahmadabadi F, Saghebjoo M, Huang CJ, Saffari I, Zardast M. The effects of high-intensity interval training and saffron aqueous extract supplementation on alterations of body weight and apoptotic indices in skeletal muscle of 4T1 breast cancer-bearing mice with cachexia.
Appl Physiol Nutr Metab. 2020;45:555-63.
. PMID:
10.1139/apnm-2019-0352.
25.
Khori V, Amani Shalamzari S, Isanejad A, Alizadeh AM, Alizadeh S, Khodayari S, Khodayari H, Shahbazi S, Zahedi A, Sohanaki H, Khaniki M, Mahdian R, Saffari M, Fayad R. Effects of exercise training together with tamoxifen in reducing mammary tumor burden in mice: Possible underlying pathway of miR-21.
Eur J Pharmacol. 2015;765:179-87.
. PMID:
10.1016/j.ejphar.2015.08.031.
26.
Buss LA, Ang AD, Hock B, Robinson BA, Currie MJ, Dachs GU. Effect of post- implant exercise on tumour growth rate, perfusion and hypoxia in mice.
PLoS One. 2020;15:e0229290.
. PMID:
10.1371/journal.pone.0229290.
27.
Welsch MA, Cohen LA, Welsch CW. Inhibition of growth of human breast carcinoma xenografts by energy expenditure via voluntary exercise in athymic mice fed a high-fat diet.
Nutr Cancer. 1995;23:309-18.
. PMID:
10.1080/01635589509514385.
28.
Abdalla DR, Murta EF, Michelin MA. The influence of physical activity on the profile of immune response cells and cytokine synthesis in mice with experimental breast tumors induced by 7,12-dimethylbenzanthracene.
Eur J Cancer Prev. 2013;22:251-8.
. PMID:
10.1097/CEJ.0b013e3283592cbb.
29.
McGee SL, Hargreaves M. Epigenetics and exercise.
Trends Endocrinol Metab. 2019 ;30:636-45.
. PMID:
10.1016/j.tem.2019.06.002.
30.
Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon.
Exp Mol Med. 2020; 52:192-203.
. PMID:
10.1038/s12276-020-0384-2.
31.
Di Meo S, Napolitano G, Venditti P. Mediators of physical activity protection against ROS-linked skeletal muscle damage.
Int J Mol Sci. 2019;20:3024.
. PMID:
10.3390/ijms20123024.
32.
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise.
Front Physiol. 2016;7:486.
. PMID:
10.3389/fphys.2016.00486.
33.
Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy.
Oxid Med Cell Longev. 2019;2019:5381692.
. PMID:
10.1155/2019/5381692.
34.
Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q. The roles of glucose metabolic reprogramming in chemo- and radio-resistance.
J Exp Clin Cancer Res. 2019;38:218.
. PMID:
10.1186/s13046-019-1214-z.
35.
Pothiwala P, Jain SK, Yaturu S. Metabolic syndrome and cancer.
Metab Syndr Relat Disord. 2009;7:279-88.
. PMID:
10.1089/met.2008.0065.
36.
Dos Santos CMM, Diniz VLS, Bachi ALL, de Oliveira LCDS, Ghazal T, Passos MEP, de Oliveira HH, Murata G, Masi LN, Martins AR, Levada-Pires AC, Curi R, Hirabara M, Sellitti DF, Pithon-Curi TC, Gorjão R. Moderate physical exercise improves lymphocyte function in melanoma-bearing mice on a high-fat diet.
Nutr Metab. 2019;16:63.
. PMID:
10.1186/s12986-019-0394-z.
37.
Moreira VM, da Silva Franco CC, Prates KV, Gomes RM, de Moraes AMP, Ribeiro TA, Martins IP, Previate C, Pavanello A, Matiusso CCI, Almeida DL, Francisco FA, Malta A, Tófolo LP, da Silva Silveira S, Saavedra LPJ, Machado K, da Silva PHO, Fabrício GS, Palma-Rigo K, de Souza HM, de Fátima Silva F, Biazi GR, Pereira TS, Vieira E, Miranda RA, de Oliveira JC, da Costa Lima LD, Rinaldi W, Ravanelli MI, de Freitas Mathias PC. Aerobic exercise training attenuates tumor growth and reduces insulin secretion in Walker 256 tumor-bearing rats.
Front Physiol. 2018 May 8;9:465.
. PMID:
10.3389/fphys.2018.00465.
38.
Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists.
Nutrients. 2014;6:2493-508.
. PMID:
10.3390/nu6072493.
39.
Tan-Shalaby J. Ketogenic diets and cancer: emerging evidence. Fed Pract. 2017 Feb;34:37S-42S.
.
40.
Weber DD, Aminazdeh-Gohari S, Kofler B. Ketogenic diet in cancer therapy.
Aging (Albany NY). 2018;10:164-5.
. PMID:
10.18632/aging.101382.