1. Mountjoy M, Sundgot-Borgen J, Burke L, Ackerman KE, Blauwet C, Constantini N, Lebrun C, Lundy B, Melin A, Meyer N, Sherman R, Tenforde AS, Torstveit MK, Budgett R. International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Int J Sport Nutr Exerc Metab 2018;28:316-31.
2. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A. The IOC consensus statement: beyond the female athlete triad--relative energy deficiency in sport (RED-S). Br J Sports Med 2014;48:491-7.
3. Koehler K, Achtzehn S, Braun H, Mester J, Schaenzer W. Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes. Appl Physiol Nutr Metab 2013;38:725-33.
4. Moss SL, Randell RK, Burgess D, Ridley S, ÓCairealláin C, Allison R, Rollo I. Assessment of energy availability and associated risk factors in professional female soccer players. Eur J Sport Sci 2021;21:861-70.
5. Nattiv A, De Souza MJ, Koltun KJ, Misra M, Kussman A, Williams NI, Barrack MT, Kraus E, Joy E, Fredericson M. The male athlete triad-a consensus statement from the female and male athlete triad coalition part 1: definition and scientific basis. Clin J Sport Med 2021;31:345-53.
6. Reed JL, De Souza MJ, Williams NI. Changes in energy availability across the season in division I female soccer players. J Sports Sci 2013;31:314-24.
10. De Souza MJ, Hontscharuk R, Olmsted M, Kerr G, Williams NI. Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite 2007;48:359-67.
12. De Souza MJ, Koltun KJ, Strock NCA, Williams NI. Rethinking the concept of an energy availability threshold and its role in the female athlete triad. Curr Opin Physiol 2019;10:35-42.
13. Strock NC, Koltun KJ, Southmayd EA, Williams NI, De Souza MJ. Indices of resting metabolic rate accurately reflect energy deficiency in exercising women. Int J Sport Nutr Exerc Metab 2020;30:14-24.
14. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism 1988;37:287-301.
15. Levine JA. Measurement of energy expenditure. Public Health Nutr 2005;8:1123-32.
16. Cunningham JJ. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am J Clin Nutr 1980;33:2372-4.
17. Cunningham JJ. Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am J Clin Nutr 1991;54:963-9.
18. Harris JA, Benedict FG. A biometric study of basal metabolism in man. Carnegie Institution of Washington. 1919.
19. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 1990;51:241-7.
20. Owen OE. Resting metabolic requirements of men and women. Mayo Clin Proc 1988;63:503-10.
21. Taguchi M, Ishikawa-Takata K, Tatsuta W, Katsuragi C, Usui C, Sakamoto S, Higuchi M. Resting energy expenditure can be assessed by fat-free mass in female athletes regardless of body size. J Nutr Sci Vitaminol 2011;57:22-9.
23. Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc 2005;105:775-89.
25. Lee G-H, Kim M-H, Kim E-K. Accuracy of predictive equations for resting metabolic rate in Korean college students. Korean J Community Nutr 2009;14:462-73.
26. Miyake R, Tanaka S, Ohkawara K, Ishikawa-Takata K, Hikihara Y, Taguri E, Kayashita J, Tabata I. Validity of predictive equations for basal metabolic rate in Japanese adults. J Nutr Sci Vitaminol 2011;57:224-32.
29. Tinsley GM, Graybeal AJ, Moore ML. Resting metabolic rate in muscular physique athletes: validity of existing methods and development of new prediction equations. Appl Physiol Nutr Metab 2019;44:397-406.
32. Thompson J, Manore MM. Predicted and measured resting metabolic rate of male and female endurance athletes. J Am Diet Assoc 1996;96:30-4.
33. Oshima S, Miyauchi S, Kawano H, Ishijima T, Asaka M, Taguchi M, Torii S, Higuchi M. Fat-free mass can be utilized to assess resting energy expenditure for male athletes of different body size. J Nutr Sci Vitaminol 2011;57:394-400.
34. Taguchi M, Ishikawa-Takata K, Ouchi S, Higuchi M. Validity of prediction equation of basal metabolic rate based on fat-free mass in Japanese female athletes. Jpn J Phys Fit Sports Med 2011;60:423-32.
36. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.
37. Tinsley GM. Proportional bias between dual-energy x-ray absorptiometry and bioelectrical impedance analysis varies based on sex in active adults consuming high-and low-carbohydrate diets. Nutr Res 2017;42:85-100.
38. Jeong J-H, Kim S-E, Kim H-J, Park J-J, Lee S-H. A study on the compare analyzed of body composition, physical strength, and anaerobic power of male middle, high school, and college soccer players. KJS 2019;17:1111-21.
39. Heymsfield SB, Gallagher D, Kotler DP, Wang Z, Allison DB, Heshka S. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am J Physiol Endocrinol Metab 2002;282:E132-8.
40. Miyauchi S, Oshima S, Asaka M, Kawano H, Torii S, Higuchi M. Organ size increases with weight gain in power-trained athletes. Int J Sport Nutr Exerc Metab 2013;23:617-23.
41. Oshima S, Miyauchi S, ASAkA M, Kawano H, Taguchi M, Torii S, Higuchi M. Relative contribution of organs other than brain to resting energy expenditure is consistent among male power athletes. J Nutr Sci Vitaminol 2013;59:224-31.
42. Taguchi M, Tatsuta W, Higuchi M. Resting energy expenditure of female athletes in different types of sport. Jpn J Nutr Di 2010;68:289-97.
43. Jagim AR, Camic CL, Kisiolek J, Luedke J, Erickson J, Jones MT, Oliver JM. Accuracy of resting metabolic rate prediction equations in athletes. J Strength Cond Res 2018;32:1875-81.