2. Huang CL, Chen MF, Jeng JS, Lin WL, Wang MH, Feng CS, Liau BS, Hwang YT, Lee TC, Su TC. Postchallenge hyperglycaemic spike associate with arterial stiffness. Int J Clin Pract 2007;61:397-402.
3. Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology 2005;20:260-70.
4. Rynders CA, Weltman JY, Jiang B, Breton M, Patrie J, Barrett EJ, Weltman A. Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J Clin Endocrinol Metab 2014;99:220-8.
6. Kobayashi R, Hashimoto Y, Okamoto T. Effects of acute aerobic exercise on arterial stiffness before and after glucose ingestion. Int J Sports Med 2017;38:12-8.
8. Kobayashi R, Hashimoto Y, Hatakeyama H, Okamoto T. Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion. Clin Exp Hypertens 2019;41:123-9.
9. Lake DA. Neuromuscular electrical stimulation: an overview and its application in the treatment of sports injuries. Sports Med 1992;13:320-36.
10. Sheffler LR, Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 2007;35:562-90.
11. Hamada T, Sasaki H, Hayashi T, Moritani T, Nakao K. Enhancement of whole body glucose uptake during and after human skeletal muscle low-frequency electrical stimulation. J Appl Physiol 2003;94:2107-12.
12. Hamada T, Hayashi T, Kimura T, Nakao K, Moritani T. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J Appl Physiol 2004;96:911-6.
13. Roy D, Jóhannsson E, Bonen A, Marette A. Electrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle. Am J Physiol 1997;273:688-94.
14. Chilibeck PD, Bell G, Jeon J, Weiss CB, Murdoch G, MacLean I, Ryan E, Burham R. Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism 1999;48:1409-13.
16. Muro M, Nagata A, Sakuma C, Moritani T, Yona M, Sakamoto K. Observation of high and low frequency muscle fatigue by means of 31P nuclear magnetic resonance. Ann Physiol Anthropol 1986;5:89-96.
17. Miyamoto T, Kamada H, Tamaki A, Moritani T. Low-intensity electrical muscle stimulation induces significant increases in muscle strength and cardiorespiratory fitness. Eur J Sport Sci 2016;16:1104-10.
18. Miura H, Ishikawa M, Deguchi K. Moderate-intensity arm-cranking exercise may not improve arterial function in healthy adult men. Int J Sports Med 2018;39:962-6.
20. Edinburgh RM, Bradley HE, Abdullah NF, Robinson SL, Chrzanowski-Smith OJ, Walhin JP, Joanisse S, Manolopoulos KN, Philp A, Hengist A, Chabowski A, Brodsky FM, Koumanov F, Betts JA, Thompson D, Wallis GA, Gonzalez JT. Lipid metabolism links nutrient-exercise timing to insulin sensitivity in men classified as overweight or obese. J Clin Endocrinol Metab 2020;105:660-76.
22. Bellini A, Nicolò A, Bazzucchi I, Sacchetti M. Effects of different exercise strategies to improve postprandial glycemia in healthy individuals. Med Sci Sports Exerc 2021;53:1334-44.
25. Goodyear LJ, King PA, Hirshman MF, Thompson CM, Horton ED, Horton ES. Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am J Physiol 1990;258:E667-72.
27. Park J, Choi Y, Myoenzono K, Yoshikawa T, Tagawa K, Isobe T, Saotome K, Sankai Y, Shimojo N, Maeda S. Effects of aerobic exercise training on the arterial stiffness and intramyocellular or extramyocellular lipid in overweight and obese men. Clin Exp Hypertens 2020;42:302-8.